Effective instruction begins with clarity about desired learning outcomes and about evidence that indicates learning has occurred, better known as “beginning with the end in mind.” By starting with long-term results and working “backward,” effective lesson planning occurs. The “backward planning” stages for a mathematics unit are:

Stage One – Desired Results

“What are the long-term learning outcomes for my students?”

Teacher Actions:
- Review the Standards, Understandings, Essential Questions, Knowledge and Skills for the unit.
- Develop a deeper understanding of each math skill (What is there to understand?).
- Build connections within and between the unit's skills (How are these understandings connected?).

Stage Two – Evidence of Learning

“How will I know if my students understand the content?”

Teacher Actions:
- Design formative and summative assessments to inform instruction and gauge student progress towards desired results (Stage One).

Stage Three – Learning Experiences and Instruction

“What learning progression best supports my students? What learning experiences will build deep understanding and achieve my desired results?”

Teacher Actions:
- Determine students’ understanding of prerequisite skills.
- With learning goals in mind, plan tasks that build conceptual knowledge, promote meaning making, connect mathematical concepts, and promote the mathematical practices.
- Teach for understanding.

During the first three weeks of school, teachers will dedicate time during math instruction to create a mathematical mindset. A menu of activities can be selected by teachers to establish a healthy classroom environment, prepare students to engage in inquiry and problem-solving, and promote a positive growth mindset (see pages 3-4).
Creating a culture of thinking in the math classroom is a dedicated process that takes place throughout the entire school year. In order to lay the foundation, teachers will spend time during the first three days of school providing students with activities that establish an engaging learning community focused on problem solving, discourse and metacognition.

How do I create a culture of thinking in the math classroom?

How can I create a collaborative learning environment for students?
- Establish norms for independent work, collaboration and communication of ideas
- Provide opportunities for collaboration and discussion

How do I honor student thinking?
- Ask students to explain their thinking (instead of answers)
- Provide activities where students engage in the math practices (e.g., math puzzles, problem solving, Which One Doesn’t Belong)

How do I promote a growth mindset amongst students?
- Provide activities and videos that promote a growth mindset*
- Discuss the importance of mistakes and the power of “yet”

*See next page for video and activity details.
Creating a Growth Mindset

Background
- The way a student reacts to academic challenges is directly related to whether or not the student has a growth mindset. The gap in student performance widens over time between those with a growth mindset and those with a fixed mindset.
- Teachers play a key role in developing growth mindset in students. To create a growth mindset culture, focus on the power of mistakes (download Jo Boaler’s “Positive Classroom Norms”). Praise the process, not the person.
- Simply telling students to have a growth mindset can backfire. A scientific explanation about how intelligence works – that the brain can get stronger and smarter with new learning – has been demonstrated to be effective.
- Reiterating the message “just try harder” can also be problematic. A growth mindset isn’t about trying harder. Students need to understand why they should put in effort and how to deploy that effort.

Secondary Videos
- Neuroplasticity (2:03)
 https://www.youtube.com/watch?v=ELpfYCZa87g
- The science behind Growth Mindset (3:04)
 https://www.youtube.com/watch?v=WtKJrB5rOKs
- Four Boosting Math Messages from Jo and Her Students (8:35)
 https://www.youcubed.org/students/
- John Legend: Success through effort (2:01)
 https://www.youtube.com/watch?v=LUtcigWSBsw

Discussion Questions
- How do you feel when you make a mistake? Why?
- How do you think other people see you when you make a mistake?
- Have you ever discovered something new from making a mistake?
- Have you ever felt proud of making a mistake?
- Has a mistake ever made you think more deeply about a problem? (start non-academic and then talk about how the lessons apply to academics)

The Power of “Yet”
- Turn a fixed mindset comment into a growth mindset statement by adding ‘yet’ to the end of the comment.
- Video: Sesame Street: Janelle Monae – Power of Yet (2:41)
 https://www.youtube.com/watch?v=XLeUvZvvvAs
- When grading student work, be it formative or summative, create a cut off point for what you would consider mastery. All work that does not meet this expectation is marked NOT YET. When returned to students, explain that they are to revise work and provide guidelines and structure for students to fix their assignments and demonstrate mastery.

Activities
- Design a poster comparing growth and fixed mindsets
- Write growth mindset hashtags and post around the classroom
- Turn the transfer goals into “I will...” statements
- Challenge students with a math puzzle and focus on using growth mindset language (I can’t get the answer... yet)
- Answer a “Dear Abby” letter from a student who feels like a failure
- Give each student a piece of paper. Ask them to crumple it up and throw it at the board with the feelings they have when they make a mistake in math. Get them to retrieve the paper, uncrumple it, and color each line with different colors. Tell your students that these lines represent all the synaptic activity that happens when a mistake is made. Explain how they can learn from mistakes. Ask them to keep the paper and stick it into a notebook or folder to look at when they make a mistake. This physical reminder prompts students to use mistakes to strengthen their brain every time they open their notebook.
In this unit students will review the work of the last three years to apply properties of real numbers, distributive property, additive inverse property, and the multiplicative inverse property to real world situations. The ultimate goal of this unit is for students to review variables and expressions and explore real-number operations.

Common Misconceptions:

- **Order of Operations:** Students might think the rule for multiplication and division tells you to do multiplication and then division, or the rule for addition and subtraction tells you to do addition and then subtraction. Students need to learn that multiplication and division are on the same level and should be applied from left to right. Addition and subtraction are on the same level and should also be applied from left to right, but only after any multiplication and division in the problems.

- **Common Errors With Real Numbers:** Some students have difficulty understanding the relationships among the various sets of numbers. See the visual below.
Topic 1: Foundations for Algebra (Chapter 1)

Transfer Goals

1. Demonstrate perseverance by making sense of a never-before-seen problem, developing a plan, and evaluating a strategy and solution.
2. Effectively communicate orally, in writing, and using models (e.g., concrete, representational, abstract) for a given purpose and audience.
3. Construct viable arguments and critique the reasoning of others using precise mathematical language.

Timeframe:
- **2 weeks/12 days**
- **Start Date:** August 17, 2017
- **Assessment Dates:** Sept. 1, 2017

Standards

<table>
<thead>
<tr>
<th>A-SSE Seeing Structure in Expressions</th>
<th>Interpret the structure of expressions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Interpret expressions that represent a quantity in terms of its context.</td>
<td>a. Interpret parts of an expression, such as terms, factors, and coefficients.</td>
</tr>
</tbody>
</table>

Prepares for:

<table>
<thead>
<tr>
<th>N-RN The Real Number System</th>
<th>Use properties of rational and irrational numbers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.</td>
<td></td>
</tr>
</tbody>
</table>

Meaning-Making

Understandings

Students will understand that...

- The Order of Operations applies to both numeric expressions, and algebraic expressions.
- Variables are used to represent quantities that change, or are unknown.
- Integer rules can be applied to real numbers.
- Word phrases can be represented with algebraic expressions.

Essential Questions

Students will keep considering...

- What is the purpose of using a variable and what do variables represent?
- How is the distributive property related to order of operations?
- How is an algebraic expression different than a numeric expression?
- How can you evaluate an expression?
- What are the rules you can use for adding, subtracting, multiplying, and dividing real numbers?

Properties:

- Distributive property
- Properties of real numbers
- Additive Inverse property
- Multiplicative Inverse property

Acquisition

Knowledge

Students will know...

Vocabulary: algebraic expression, numeric expression, constant, variable, evaluate, order of operations, distributive property, additive inverse, multiplicative inverse, opposite, absolute value, real number, coefficient, reciprocal, simplify, base, exponent, power

Procedures for:

- Simplifying algebraic expressions
- Simplifying numeric expressions
- Evaluating algebraic expressions

Skills

Students will be skilled at and able to do the following...

- Students can distinguish between when a word phrase can be represented with a numeric expression, and with an algebraic expression and explain why it was needed.
- Students can identify the coefficients, and constants
- Students will be able to write expressions that represent real world problems and simplify including those involving the area and perimeter of a rectangle or triangle.
- Students can use addition, subtraction, multiplication, and division rules effectively.
- Students can use order of operations to simplify numeric expressions and evaluate and simplify algebraic expressions.
Transfer is a student’s ability to independently apply understanding in a novel or unfamiliar situation. In mathematics, this requires that students use reasoning and strategy, not merely plug in numbers in a familiar-looking exercise, via a memorized algorithm.

Transfer goals highlight the effective uses of understanding, knowledge, and skills we seek in the long run – that is, what we want students to be able to do when they confront new challenges, both in and outside school, beyond the current lessons and unit. These goals were developed so all students can apply their learning to mathematical or real-world problems while simultaneously engaging in the Standards for Mathematical Practices. In the mathematics classroom, assessment opportunities should reflect student progress towards meeting the transfer goals.

With this in mind, the revised **PUSD transfer goals** are:

1) **Demonstrate perseverance by making sense of a never-before-seen problem, developing a plan, and evaluating a strategy and solution.**
2) **Effectively communicate orally, in writing, and by using models (e.g., concrete, representational, abstract) for a given purpose and audience.**
3) **Construct viable arguments and critique the reasoning of others using precise mathematical language.**

Multiple measures will be used to evaluate student acquisition, meaning-making and transfer. Formative and summative assessments play an important role in determining the extent to which students achieve the desired results in stage one.

<table>
<thead>
<tr>
<th>Formative Assessment</th>
<th>Summative Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aligning Assessment to Stage One</td>
<td>What evidence must be collected and assessed, given the desired results defined in stage one?</td>
</tr>
<tr>
<td>• What constitutes evidence of understanding for this lesson?</td>
<td>• What evidence must be collected and assessed, given the desired results defined in stage one?</td>
</tr>
<tr>
<td>• Through what other evidence during the lesson (e.g. response to questions, observations, journals, etc.) will students demonstrate achievement of the desired results?</td>
<td>• What is evidence of understanding (as opposed to recall)?</td>
</tr>
<tr>
<td>• How will students reflect upon, self-assess, and set goals for their future learning?</td>
<td>• Through what task(s) will students demonstrate the desired understandings?</td>
</tr>
<tr>
<td>Opportunities</td>
<td>Opportunities</td>
</tr>
<tr>
<td>• Discussions and student presentations</td>
<td>• Unit assessments</td>
</tr>
<tr>
<td>• Checking for understanding (using response boards)</td>
<td>• Teacher-created quizzes and/or mid-unit assessments</td>
</tr>
<tr>
<td>• Ticket out the door, Cornell note summary, and error analysis</td>
<td>• Illustrative Mathematics tasks (https://www.illustrativemathematics.org/)</td>
</tr>
<tr>
<td>• Performance Tasks within a Unit</td>
<td>• Performance tasks</td>
</tr>
<tr>
<td>• Teacher-created assessments/ quizzes</td>
<td></td>
</tr>
</tbody>
</table>
The following pages address how a given skill may be assessed. Assessment guidelines, examples and possible question types have been provided to assist teachers in developing formative and summative assessments that reflect the rigor of the standards. *These exact examples cannot be used for instruction or assessment, but can be modified by teachers.*

Topic 1: Foundations for Algebra (Chapter 1)

<table>
<thead>
<tr>
<th>Unit Skills</th>
<th>SBAC Targets (DOK)</th>
<th>Standards</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Students can distinguish between when a word phrase can be represented with a numeric expression, and with an algebraic expression and explain why it was needed.</td>
<td>Select and use appropriate tools strategically. (1,2)</td>
<td>A-SSE Seeing Structure in Expressions</td>
<td>Simplify the expression: $2(1 + c) =$</td>
</tr>
<tr>
<td>• Student can identify the coefficients, and constants.</td>
<td>Apply mathematics to solve well-posed problems in mathematics and arising in everyday life, society, and the workplace. (2,3)</td>
<td>Interpret the structure of expressions. 1. Interpret expressions that represent a quantity in terms of its context. b. Interpret parts of an expression, such as terms, factors, and coefficients.</td>
<td>Which expression is equivalent to $6(g + 7)$?</td>
</tr>
<tr>
<td>• Students will be able to write expressions that represent real world problems and simplify including those involving the area and perimeter of a rectangle or triangle.</td>
<td>Use properties of rational and irrational numbers. (1,2,3)</td>
<td>Prepares for: N-RN The Real Number System</td>
<td>Look at the following expression: $2 + h - 5j$</td>
</tr>
<tr>
<td>• Students can use addition, subtraction, multiplication, and division rules effectively.</td>
<td>Construct, autonomously, chains of reasoning that will justify or refute propositions or conjectures. (3, 4)</td>
<td>Use properties of rational and irrational numbers. 3. Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.</td>
<td>What is the coefficient of j?</td>
</tr>
<tr>
<td>• Students can use order of operations to simplify numeric expressions and evaluate and simplify algebraic expressions.</td>
<td></td>
<td>Prepares for:</td>
<td>What is the value of $20 - (3 \times 2^3 - 5)$?</td>
</tr>
</tbody>
</table>

A -191 B 1 C 11 D 131

Write an expression in simplified form for the area of the rectangle shown below:

- s
Topic 1: Foundations for Algebra (Chapter 1)

Transfer Goals

1. Demonstrate perseverance by making sense of a never-before-seen problem, developing a plan, and evaluating a strategy and solution.
2. Effectively communicate orally, in writing, and using models (e.g., concrete, representational, abstract) for a given purpose and audience.
3. Construct viable arguments and critique the reasoning of others using precise mathematical language.

Essential Questions:

- What is the purpose of using a variable and what do variables represent?
- How is the distributive property related to order of operations?
- How is an algebraic expression different than a numeric expression?
- How can you evaluate an expression?
- What is the distributive property related to order of operations?
- What are the rules you can use for adding, subtracting, multiplying, and dividing real numbers?

Standards:

- A-SSE 1a, N-RN 3

Suggested Timeframe:

- 2 weeks/12 days

Start Date:

- August 17, 2017

Assessment Dates:

- September 1, 2017

### Time	Lesson/Activity	Focus Questions for Lessons	Understandings	Knowledge	Skills	Resources
1 Day (Aug. 17th)	Lesson 1-1: Variables and Expressions SMP: 1,3,4,7 (pp. 4-9) **A-SSE 1a**	• How can you use an algebraic expression to represent a word phrase?				
• How are constant quantities different than variable quantities?						
• What strategies can you use to help you model and understand word phrases?						
Inquiry Question Options: p. 4 “Solve It”	• Algebraic expressions can be used to represent patterns and word phrases.	Vocabulary: quantity, variable, algebraic expression, numerical expression, constant, coefficient				
• A variable is a symbol (usually a letter) that represents either an unknown quantity or a quantity that can change.						
• An algebraic expression is a mathematical phrase that uses one or more variables.						
• A numeric expression is a mathematical phrase involving numbers and operation symbols, and can be simplified to a constant.	• Students can distinguish between when a word phrase can be represented with a numeric expression, and with an algebraic expression and explain why it was needed.					
• Students can write expressions with two operations when given a word phrase.						
• Students can write a word phrase that represents a algebraic expression.						
• Student can identify the coefficients, and constants in an expression.	Common Core Problems: 7, 8, 31, 32 (Discuss how a variable with a coefficient represents multiplication), 36, 37, 38, 39					
Note:						
• Include an example similar to problem 5 on pg.6.						
2 Days (Aug. 18th & 21st)	Lesson 1-2: Order of Operations and Evaluating Expressions SMP: 1,3,4,6,8 (pp. 10-15) **A-SSE 1a**	• Why is it important to follow the order of operations when simplifying numeric expressions, and evaluating algebraic expressions?				
Inquiry Question Options: p. 10 “Solve It” | • When simplifying an expression, you need to perform operations in the correct order.
• When evaluating an expression every operation being performed with the variable, needs to be performed with the number that the variable is equivalent to. | Vocabulary: evaluate, simplify, base, exponent, power
• The correct order of operations.
• To evaluate an expression when a value is substituted for a variable.
• Powers can be used to represent repeated multiplication such as \(2 \cdot 2 \cdot 2\). | • Students will be able to simplify numeric expressions.
• Students will be able to evaluate Algebraic expressions using real numbers.
• Students will be able to write expressions that model real world situations and evaluate them. | Common Core Problems: 8, 36, 43, 53, 54, 60
1-2 Think about a Plan |
<table>
<thead>
<tr>
<th>Time</th>
<th>Lesson/Activity</th>
<th>Focus Questions for Lessons</th>
<th>Understandings</th>
<th>Knowledge</th>
<th>Skills</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Day (Aug. 22nd)</td>
<td>Lesson 1-5: Adding and Subtracting Real Numbers SMP: 1,3,4 (pp. 30-36)</td>
<td>• What are two methods you can use to add and subtract real numbers? How is subtraction related to addition?</td>
<td>• You can add or subtract any real numbers using a number line model. You can also add or subtract real numbers using rules involving absolute values.</td>
<td>Vocabulary: absolute value, opposites, additive inverse. To add two numbers with the same sign, add their absolute values. The sum has the same sign as the addends. To add two numbers with different signs, subtract their absolute values. The sum has the same sign as the addend with the greater absolute value. For every real number a, there is an additive inverse (-a), and the sum is 0. To subtract a real number, add its opposite.</td>
<td>• Students will be able to add and subtract integers, decimals, and fractions. • Students will be able to evaluate expressions. • Students will to explain reasoning to determine if the value of an expression is positive or negative, and to compare the value of two different expressions.</td>
<td>Common Core Problems: 33, 34, 35, 47-60, 65, 69</td>
</tr>
<tr>
<td></td>
<td>Prepares for: N-RN 3</td>
<td>Inquiry Question Options: p. 30 “Solve It”</td>
<td></td>
<td></td>
<td>1-5 Additional Vocabulary Support</td>
<td>1-5 Think about a Plan</td>
</tr>
<tr>
<td>Note:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Include an example similar to problem 4 on pg.33. • Remind students that writing repeated addition can be written as a product such as (7 + 7 + 7 + 7 = \left(7 \times 4\right)).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Lesson/Activity</th>
<th>Focus Questions for Lessons</th>
<th>Understandings</th>
<th>Knowledge</th>
<th>Skills</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Day (Aug. 23rd)</td>
<td>Lesson 1-6: Multiplying and Dividing Real Numbers SMP: 1,3,4,6,7 (pp. 38-44)</td>
<td>• How are the rules for addition and subtraction different than the rules for multiplication and division? How are multiplication and division related? Why does the inverse property of multiplication work?</td>
<td>• The rules for multiplying real numbers are related to properties of real numbers and the definitions of operations.</td>
<td>Vocabulary: multiplicative inverse, reciprocal. The product or quotient of two real numbers with different signs is negative. The product or quotient of two real numbers with the same sign is positive. The quotient of 0 and any nonzero real number is 0. The quotient of any real number and 0 is undefined.</td>
<td>• Students will be able to multiply and divide real numbers. • Students will be able to solve real world problems involving the multiplication and division or real numbers. • Students will evaluate expression involving multiplication and division.</td>
<td>Common Core Problems: 5, 6, 7, 48, 51-53, 60-62, 64-69</td>
</tr>
<tr>
<td></td>
<td>Prepares for: N-RN 3</td>
<td>Inquiry Question Options: p. 38 “Solve It”</td>
<td></td>
<td></td>
<td>1-6 Think about a Plan</td>
<td>Note: • Include an example similar to problem 3 on pg.40. • Include examples where students evaluate expressions using integer values.</td>
</tr>
</tbody>
</table>

Common Core Practices
- Instruction in the Standards for Mathematical Practices
- Use of Manipulatives
- Use of Talk Moves
- Use of Technology
- Use of Real-world Scenarios
- Project-based Learning
- Thinking Maps
<table>
<thead>
<tr>
<th>Time</th>
<th>Lesson/Activity</th>
<th>Focus Questions for Lessons</th>
<th>Understandings</th>
<th>Knowledge</th>
<th>Skills</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Days</td>
<td>Lesson 1-7: The Distributive Property SMP: 1,3,4,6,7 (pp. 46-52)</td>
<td>• How are the distributive property and the order of operations related?</td>
<td>• You can use the distributive property to simplify the product of a number and a sum or difference.</td>
<td>Vocabulary: Distributive property, term, constant, coefficient, like terms, simplify</td>
<td>• Students will be able to simplify algebraic expressions using distributive property and combining like term.</td>
<td>Common Core Problems: 6, 7, 8, 69, 70, 74, 81 *Additional Materials needed with more practice of distributing a negative number, and combining like terms.</td>
</tr>
<tr>
<td></td>
<td>Inquiry Question Options: p. 46 “Solve It”</td>
<td></td>
<td></td>
<td>• The distributive property allows you to find the product of an algebraic expression and a number.</td>
<td>• Students will be able to explain why two terms are alike or not.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• An algebraic expression can be simplified by combining the parts of the expression that are alike.</td>
<td>• Students will be able to write expressions that represent the area, and perimeter of rectangles, and triangles.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• In a later unit the distributive property will be used to factor some algebraic expressions.</td>
<td>• Students will be able to write expressions that represent real world problems and simplify.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to simplify algebraic expressions using distributive property and combining like term.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to explain why two terms are alike or not.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to write expressions that represent the area, and perimeter of rectangles, and triangles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to write expressions that represent real world problems and simplify.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to explain why two terms are alike or not.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to write expressions that represent the area, and perimeter of rectangles, and triangles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to write expressions that represent real world problems and simplify.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Day</td>
<td>Quiz Sections 1.1-1.7 Teacher Generated Quiz</td>
<td></td>
<td></td>
<td>• Students will be able to state the following formulas:</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to state the following formulas:</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to state the following formulas:</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to state the following formulas:</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to state the following formulas:</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to state the following formulas:</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to state the following formulas:</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
</tbody>
</table>

Note: This lesson is not in the book. Use the attached handouts to supplement the lesson.

Problems to emphasize:
- p 520-521: # 5, 7, 28-33, 35, 37

<table>
<thead>
<tr>
<th>Time</th>
<th>Lesson/Activity</th>
<th>Focus Questions for Lessons</th>
<th>Understandings</th>
<th>Knowledge</th>
<th>Skills</th>
<th>Additional Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Days</td>
<td>Lesson 1-0: Perimeter and Area SMP: 1,3,4,6,7 (Supplemental)</td>
<td>• How do you determine the perimeter and area of a geometric figure?</td>
<td>• The perimeter of a figure is the distance around the figure.</td>
<td>Vocabulary: triangle, rectangle, square, polygon, circle, radius, diameter, perimeter, area, composite figure</td>
<td>• Students will be able to state the following formulas:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The area of a figure is the number of square units contained in the figure.</td>
<td>• The perimeter of a figure is the sum of all sides.</td>
<td>• The perimeter of a figure is the sum of all sides.</td>
<td>• Students will be able to find the perimeter and area of geometric figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Area formulas for the following: triangle, circle, square, and rectangle.</td>
<td>• Area formulas for the following: triangle, circle, square, and rectangle.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• The area of a composite figure</td>
<td>• The area of a composite figure (determined using the “divide and conquer” method).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(determined using the “divide and conquer” method).</td>
<td>• The area of a shaded region</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(determined by subtracting the area of the smaller figure from the area of the larger figure).</td>
<td>The area of a shaded region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Day</td>
<td>Review Topic 1 Concepts & Skills Use Textbook Resources and/or Teacher Created Items</td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
<tr>
<td>1 Day</td>
<td>Topic 1 Assessment (Created and provided by PUSD)</td>
<td></td>
<td></td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td>• Students will be able to determine areas of composite figures and shaded figures.</td>
<td></td>
</tr>
</tbody>
</table>
Algebra 1
Areas and Perimeters

Find the perimeter of each figure.

1)

2)

3)

4)

5)

6)
7) The length of the rectangle is 12 inches. The width of the rectangle is 5 inches more than the length. What is the perimeter of the rectangle?

8) The first side of the triangle is 10 cm long. The second side of the triangle is twice as long as the first side. The third side of the triangle is 3 cm less than the first side. What is the perimeter of the triangle?

Find the perimeter of each figure.

9)
\[
\begin{align*}
2x \\
\text{ } \\
x+4 \\
\end{align*}
\]

10)
\[
\begin{align*}
3x-2 \\
\text{ } \\
\end{align*}
\]

11)
\[
\begin{align*}
4x \\
\text{ } \\
x+1 \\
x-5 \\
\end{align*}
\]

12)
\[
\begin{align*}
x-3 \\
\text{ } \\
2x+7 \\
\end{align*}
\]
Find the area of each figure. Leave answer in exact form.

13) The width of the rectangle is 14 yards. The length of the rectangle is 6 less than the width. What is the area of the rectangle?

14) The side of a square is 9 inches. What is the area of the square?

17) The width of the rectangle is 14 yards. The length of the rectangle is 6 less than the width. What is the area of the rectangle?

18) The side of a square is 9 inches. What is the area of the square?
19) The diameter of a circle is 18 mm. What is the area of the circle? Leave answer in exact form.

Find the area of each figure. Leave answer in exact form.

20)

21)

22)

23)
Find the perimeter of each figure.

1)

2)

3)

4)

Find the perimeter of each figure.

5)

6)
Find the area of each figure. Leave answer in exact form.

7)

8)

Find the area of each figure. All angles are right angles.

9)

10)

11)

12)

Page 17 of 18
Find the area of each shaded region. All rectangular angles are right angles.

13)

14)

Find the area of each shaded region. Leave answer in exact form.

15)

16)

17)

18)